Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition
نویسندگان
چکیده
Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800 -1100 °C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm(-1) to 2300 cm(-1), along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100 °C.
منابع مشابه
What are the active carbon species during graphene chemical vapor deposition growth?
The dissociation of carbon feedstock is a crucial step for understanding the mechanism of graphene chemical vapor deposition (CVD) growth. Using first-principles calculations, we performed a comprehensive theoretical study for the population of various active carbon species, including carbon monomers and various radicals, CHi (i = 1, 2, 3, 4), on four representative transition-metal surfaces, C...
متن کاملGrowth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces
We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, oneor two...
متن کاملReview of chemical vapor deposition of graphene and related applications.
Since its debut in 2004, graphene has attracted enormous interest because of its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the preparation and production of graphene for various applications since the method was first reported in 2008/2009. In this Account, we review graphene CVD on various metal substrates with an emphasis on Ni and Cu. In additi...
متن کاملRapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy.
The growth of large-area bilayer graphene has been of technological importance for graphene electronics. The successful application of graphene bilayers critically relies on the precise control of the stacking orientation, which determines both electronic and vibrational properties of the bilayer system. Toward this goal, an effective characterization method is critically needed to allow resear...
متن کاملGraphene growth under Knudsen molecular flow on a confined catalytic metal coil.
We have established a simple method for drastically improving the productivity of chemical vapor deposition in large-area graphene synthesis using a roll-stacked Ni coil as a catalyst. Our systematic investigation of the effects of a confined catalytic geometry has shown that the gas flow through interfacial gaps within the stack follows non-continuum fluid dynamics when the size of the gap dec...
متن کامل